Системы координат

5 разделов
от теории до практики
примеров
Примеры решения задач
видео
Примеры решения задач
Содержание
  1. Декартова система координат.
    Начать изучение
  2. Деление отрезка в заданном отношении.
    Начать изучение
  3. Декартова прямоугольная система координат.
    Начать изучение
  4. Полярная система координат.
    Начать изучение
  5. Цилиндрические и сферические координаты.
    Начать изучение

Декартова система координат.

Фиксируем в пространстве точку \(O\) и рассмотрим произвольную точку \(M\). Радиус-вектором точки \(M\) по отношению к точке \(O\) называется вектор \(\overrightarrow{OM}\). Если в пространстве кроме точки \(O\) выбран некоторый базис, то точке \(M\) сопоставляется упорядоченная тройка чисел — компоненты ее радиус-вектора.

Определение.

Декартовой системой координат в пространстве называется совокупность точки и базиса.

Точка носит название начала координат. Прямые, проходящие через начало координат в направлении базисных векторов, называются осями координат; первая — осью абсцисс, вторая — осью ординат, третья — осью аппликат. Плоскости, проходящие через оси координат, называются координатными плоскостями.

Определение.

Пусть дана декартова система координат \(O\), \(\boldsymbol{e_{1}}\), \(\boldsymbol{e_{2}}\), \(\boldsymbol{e_{3}}\). Компоненты \(x\), \(y\), \(z\) радиус-вектора \(\overrightarrow{OM}\) точки \(M\) называются координатами точки \(M\) в данной системе координат:
$$
\overrightarrow{OM} = x\boldsymbol{e_{1}} + y\boldsymbol{e_{2}} + z\boldsymbol{e_{3}}.\nonumber
$$
Первая координата называется абсциссой, вторая — ординатой, а третья — аппликатой.

Аналогично определяются координаты на плоскости и на прямой линии. Разумеется, точка на плоскости имеет только две координаты, а на прямой линии — одну.

Координаты точки пишут в скобках после буквы, обозначающей точку. Например, запись \(A(2,\ 1/2)\) означает, что точка \(A\) имеет координаты 2 и 1/2 в ранее выбранной декартовой системе координат на плоскости (рис. 2.1).

Рис. 2.1
Рис. 2.1

Координаты точки, как и компоненты вектора, — величины безразмерные. В частности, они не зависят от выбранной единицы измерения длин. В самом деле, раскладывая векторы в теореме о линейной зависимости систем векторов, мы сводили дело к разложению вектора по коллинеарному с ним ненулевому вектору. А в этом случае компонента равна отношению длин, взятому с определенным знаком.
Легко видеть, что при заданной системе координат координаты точки определены однозначно. С другой стороны, если задана система координат, то для каждой упорядоченной тройки чисел найдется единственная точка, имеющая эти числа в качестве координат. Система координат на плоскости определяет такое же соответствие между точками плоскости и парами чисел. Задание системы координат на прямой линии сопоставляет каждой точке вещественное число и каждому числу — точку.

Рис. 2.2
Рис. 2.2

Рассмотрим две точки \(A\) и \(B\), координаты которых относительно некоторой декартовой системы координат \(O\), \(\boldsymbol{e_{1}}\), \(\boldsymbol{e_{2}}\), \(\boldsymbol{e_{3}}\) соответственно \(x_{1}\), \(y_{1}\), \(z_{1}\) и \(x_{2}\), \(y_{2}\), \(z_{2}\). Поставим себе задачу найти компоненты вектора \(\overrightarrow{AB}\). Очевидно, что \(\overrightarrow{AB} = \overrightarrow{OB}-\overrightarrow{OA}\) (рис. 2.2). Компоненты радиус-векторов \(\overrightarrow{OA}\) и \(\overrightarrow{OB}\) равны (\(x_{1}\), \(y_{1}\), \(z_{1}\)) и (\(x_{2}\), \(y_{2}\), \(z_{2}\)) по определению координат. Из ранее доказанного предположения следует, что \(\overrightarrow{AB}\) имеет компоненты (\(x_{2}-x_{1}\), \(y_{2}-y_{1}\), \(z_{2}-z_{1}\)). Этим доказано следующее утверждение.

Утверждение 1.

Чтобы найти координаты вектора, нужно из координат его конца вычесть координаты его начала.


Деление отрезка в заданном отношении.

Найдем координаты точки \(M\) на отрезке \(AB\), которая делит этот отрезок в отношении \(\lambda/\mu\), то есть удовлетворяет условию
$$
\frac{|AM|}{|MB|} = \frac{\lambda}{\mu},\ \lambda > 0,\ \mu > 0\nonumber
$$
(рис. 2.3). Это условие можно переписать в виде
$$
\mu\overrightarrow{AM} = \lambda\overrightarrow{MB}.\label{ref1}
$$

Рис. 2.3
Рис. 2.3

Обозначив через (\(x_{1}\), \(y_{1}\), \(z_{1}\)) и (\(x_{2}\), \(y_{2}\), \(z_{2}\)) соответственно координаты точек \(A\) и \(B\), а через (\(x\), \(y\), \(z\)) координаты точки \(M\), разложим обе части равенства по базису, причем компоненты векторов \(\overrightarrow{AM}\) и \(\overrightarrow{MB}\) найдем по предложению 1. Тогда
$$
\mu(x-x_{1}) = \lambda(x_{2}-x),\ \mu(y-y_{1}) = \lambda(y_{2}-y),\ \mu(z-z_{1}) = \lambda(z_{2}-z).\nonumber
$$
Из этих равенств можно найти \(x\), \(y\) и \(z\), поскольку \(\lambda + \mu \neq 0\):
$$
x = \frac{\mu x_{1} + \lambda x_{2}}{\lambda + \mu},\ y = \frac{\mu y_{1} + \lambda y_{2}}{\lambda + \mu},\ z = \frac{\mu z_{1} + \lambda z_{2}}{\lambda + \mu}\label{ref2}
$$
Если в формулах \eqref{ref2} мы будем считать одно из чисел \(\lambda\) или \(\mu\) отрицательным, то из равенства \eqref{ref1} увидим, что \(M\) находится на той же прямой вне отрезка \(AB\), деля его в отношении |\(\lambda/\mu\)|. Поэтому из формул \eqref{ref2} можно найти координаты точки, делящей отрезок в заданном отношении как внутренним, так и внешним образом.

На плоскости и на прямой линии задача о делении отрезка решается точно так же, только из трех равенств в \eqref{ref2} остается соответственно два и одно равенство.


Декартова прямоугольная система координат.

Общие декартовы системы координат используются реже, чем специальный класс таких систем — декартовы прямоугольные системы координат.

Определение.

Базис называется ортонормированным, если его векторы попарно ортогональны и по длине равны единице. Декартова система координат, базис которой ортонормирован, называется декартовой прямоугольной системой координат.

Нетрудно проверить, что координаты точки относительно декартовой прямоугольной системы координат в пространстве по абсолютной величине равны расстояниям от этой точки до соответствующих координатных плоскостей. Они имеют знак плюс или минус в зависимости от того, лежит точка по ту же или по другую сторону от плоскости, что и конец базисного вектора, перпендикулярного этой плоскости.

Аналогично находят координаты точки относительно декартовой прямоугольной системы координат на плоскости.


Полярная система координат.

Декартовы системы координат не единственный способ определять при помощи чисел положение точки на плоскости. Для этого используются многие другие типы координатных систем. Здесь мы опишем некоторые из них.

На плоскости часто употребляется полярная система координат. Она определена, если задана точка \(O\), называемая полюсом, и исходящий из полюса луч \(l\), который называется полярной осью. Положение точки \(M\) фиксируется двумя числами: радиусом \(r = \overrightarrow{OM}\) и углом \(\varphi\) между полярной осью и вектором \(\overrightarrow{OM}\). Этот угол называется полярным углом (рис. 2.4).

Рис. 2.4
Рис. 2.4

Мы будем измерять полярный угол в радианах и отсчитывать от полярной оси против часовой стрелки. У полюса \(r = 0\), а \(\varphi\) не определено. У остальных точек \(r > 0\), а \(\varphi\) определяется с точностью до слагаемого, кратного 2\(\pi\). Это означает, что пары чисел \((r,\ \varphi)\), \((r,\ \varphi + 2\pi)\) и вообще (\(r\), \(\varphi + 2k\pi\)), где \(k\) — любое целое число, представляют собой полярные координаты одной и той же точки.

Иногда ограничивают изменение полярного угла какими-нибудь условиями, например, \(0 \leq \varphi < 3\pi\) или \(-\pi < \varphi \leq \pi\). Это устраняет неоднозначность, но зато вводит другие неудобства.

Пусть задана полярная система координат и упорядоченная пара чисел \((r,\ \varphi)\), из которых первое неотрицательно. Мы можем сопоставить этой паре точку, для которой эти числа являются полярными координатами. Именно, если \(r = 0\), мы сопоставляем полюс. Если же \(r > 0\), то паре \((r,\ \varphi)\) ставим в соответствие точку, радиус-вектор которой имеет длину \(r\) и составляет с полярной осью угол \(\varphi\). При этом парам чисел \((r,\ \varphi)\) и \((r_{1},\ \varphi_{1})\) сопоставляется одна и та же точка, если \(r = r_{1}\), а \(\varphi = \varphi_{1} = 2\pi k\), где \(k\) — целое число.

Выберем на плоскости декартову прямоугольную систему координат, поместив ее начало в полюс \(O\) и приняв за базис векторы \(\boldsymbol{e_{1}}\) и \(\boldsymbol{e_{2}}\) длины \(l\), направленные соответственно вдоль полярной оси и под углом \(\pi/2\) к ней (угол отсчитывается против часовой стрелки). Как легко видеть из рис. 2.4, декартовы координаты точки выражаются через ее полярные координаты формулами
$$
x = r \cos \varphi,\ y = r \sin \varphi.\label{ref3}
$$


Цилиндрические и сферические координаты.

В пространстве обобщением полярных систем координат являются цилиндрические и сферические системы координат. И для тех, и для других фигура, относительно которой определяется положение точки, состоит из точки \(O\), луча \(l\), исходящего из \(O\), и вектора \(\boldsymbol{n}\), равного по длине 1 и перпендикулярного к \(l\). Через точку \(O\) проведем плоскость \(\Theta\), перпендикулярную вектору \(\boldsymbol{n}\). Луч \(l\) лежит в этой плоскости.

Пусть дана точка \(M\). Опустим из нее перпендикуляр \(MM’\) на плоскость \(\Theta\).

Цилиндрические координаты точки \(M\) — это три числа \(r\), \(\varphi\), \(h\). Числа \(r\) и \(\varphi\) — полярные координаты точки \(M’\) по отношению к полюсу \(O\) и полярной оси \(l\), a \(h\) — компонента вектора \(\overrightarrow{M’M}\) по вектору \(\boldsymbol{n}\). Она определена, так как эти векторы коллинеарны (рис. 2.5).

Рис. 2.5
Рис. 2.5

Сферические координаты точки — три числа (\(r\), \(\varphi\), \(\theta\)). Они определяются так: \(r = |\overrightarrow{OM}|\). Как и для цилиндрических координат, \(\varphi\) — угол вектора \(\overrightarrow{OM_{1}}\) с лучом \(l\), а \(\theta\) — угол вектора \(\overrightarrow{OM}\) с плоскостью \(\Theta\) (рис. 2.6).

Рис. 2.6
Рис. 2.6
Оставить комментарий